A scatter chart always has two value axes to show one set of numerical data along a horizontal (value) axis and another set of numerical values along a vertical (value) axis. The chart displays points at the intersection of an x and y numerical value, combining these values into single data points.
For a scatter chart we must define an rx.recharts.scatter()
component for each set of values we wish to plot. Each rx.recharts.scatter()
component has a data
prop which clearly states which data source we plot. We also must define rx.recharts.x_axis()
and rx.recharts.y_axis()
so that the graph knows what data to plot on each axis.
rx.recharts.scatter_chart(
rx.recharts.scatter(
data=data01,
fill="#8884d8",
),
rx.recharts.x_axis(data_key="x", type_="number"),
rx.recharts.y_axis(data_key="y"),
)
data01 = [
{"x": 100, "y": 200, "z": 200},
{"x": 120, "y": 100, "z": 260},
{"x": 170, "y": 300, "z": 400},
{"x": 170, "y": 250, "z": 280},
{"x": 150, "y": 400, "z": 500},
{"x": 110, "y": 280, "z": 200},
]
We can also add two scatters on one chart by using two rx.recharts.scatter()
components, and we can define an rx.recharts.z_axis()
which represents a third column of data and is represented by the size of the dots in the scatter plot.
rx.recharts.scatter_chart(
rx.recharts.scatter(
data=data01, fill="#8884d8", name="A"
),
rx.recharts.scatter(
data=data02, fill="#82ca9d", name="B"
),
rx.recharts.cartesian_grid(stroke_dasharray="3 3"),
rx.recharts.x_axis(data_key="x", type_="number"),
rx.recharts.y_axis(data_key="y"),
rx.recharts.z_axis(
data_key="z", range=[60, 400], name="score"
),
rx.recharts.legend(),
rx.recharts.graphing_tooltip(),
)
data01 = [
{"x": 100, "y": 200, "z": 200},
{"x": 120, "y": 100, "z": 260},
{"x": 170, "y": 300, "z": 400},
{"x": 170, "y": 250, "z": 280},
{"x": 150, "y": 400, "z": 500},
{"x": 110, "y": 280, "z": 200},
] & data02 = [
{"x": 200, "y": 260, "z": 240},
{"x": 240, "y": 290, "z": 220},
{"x": 190, "y": 290, "z": 250},
{"x": 198, "y": 250, "z": 210},
{"x": 180, "y": 280, "z": 260},
{"x": 210, "y": 220, "z": 230},
]
Chart data tied to a State var causes the chart to automatically update when the state changes, providing a nice way to visualize data in response to user interface elements. View the "Data" tab to see the substate driving this calculation of iterations in the Collatz Conjecture for a given starting number. Enter a starting number in the box below the chart to recalculate.
rx.vstack(
rx.recharts.scatter_chart(
rx.recharts.scatter(
data=ScatterChartState.data,
fill="#8884d8",
),
rx.recharts.x_axis(data_key="x", type_="number"),
rx.recharts.y_axis(data_key="y", type_="number"),
),
rx.form(
rx.input(placeholder="Enter a number", id="start"),
rx.button("Compute", type_="submit"),
on_submit=ScatterChartState.compute_collatz,
),
width="100%",
height="15em",
on_mount=ScatterChartState.compute_collatz(
{"start": "15"}
),
)
class ScatterChartState(rx.State):
data: list[dict[str, int]] = []
def compute_collatz(self, form_data: dict) -> int:
n = int(form_data["start"])
yield rx.set_value("start", "")
self.data = []
for ix in range(400):
self.data.append({"x": ix, "y": n})
if n == 1:
break
if n % 2 == 0:
n = n // 2
else:
n = 3 * n + 1
A Scatter chart component in Recharts.
A Scatter component in Recharts.