Var operations transform the placeholder representation of the value on the frontend and provide a way to perform basic operations on the Var without having to define a computed var.
Within your frontend components, you cannot use arbitrary Python functions on the state vars. For example, the following code will not work.
class State(rx.State): number: int def index(): # This will be compiled before runtime, before `State.number` has a known value. # Since `float` is not a valid var operation, this will throw an error. rx.text(float(State.number))
This is because we compile the frontend to Javascript, but the value of State.number
is only known at runtime.
In this example below we use a var operation to concatenate a string
with a var
, meaning we do not have to do in within state as a computed var.
I just bought a bunch of DOGE
DOGE is going to the moon!
coins = ["BTC", "ETH", "LTC", "DOGE"]
class VarSelectState(rx.State):
selected: str = "DOGE"
def var_operations_example():
return rx.vstack(
# Using a var operation to concatenate a string with a var.
rx.heading(
"I just bought a bunch of "
+ VarSelectState.selected
),
# Using an f-string to interpolate a var.
rx.text(
f"{VarSelectState.selected} is going to the moon!"
),
rx.select(
coins,
value=VarSelectState.selected,
on_change=VarSelectState.set_selected,
),
)
Var operations allow us to change vars on the front-end without having to create more computed vars on the back-end in the state.
Some simple examples are the ==
var operator, which is used to check if two vars are equal and the to_string()
var operator, which is used to convert a var to a string.
"Banana"is my favorite fruit!
The selected fruit is not equal to the favorite fruit.
fruits = ["Apple", "Banana", "Orange", "Mango"]
class EqualsState(rx.State):
selected: str = "Apple"
favorite: str = "Banana"
def var_equals_example():
return rx.vstack(
rx.text(
EqualsState.favorite.to_string()
+ "is my favorite fruit!"
),
rx.select(
fruits,
value=EqualsState.selected,
on_change=EqualsState.set_selected,
),
rx.cond(
EqualsState.selected == EqualsState.favorite,
rx.text(
"The selected fruit is equal to the favorite fruit!"
),
rx.text(
"The selected fruit is not equal to the favorite fruit."
),
),
)
The -
operator is used to get the negative version of the var. The abs()
operator is used to get the absolute value of the var. The .length()
operator is used to get the length of a list var.
The number: 0
Negated:0
Absolute:0
Numbers seen:0
import random
class OperState(rx.State):
number: int
numbers_seen: list = []
def update(self):
self.number = random.randint(-100, 100)
self.numbers_seen.append(self.number)
def var_operation_example():
return rx.vstack(
rx.heading(
f"The number: {OperState.number}", size="3"
),
rx.hstack(
rx.text(
"Negated:",
rx.badge(
-OperState.number,
variant="soft",
color_scheme="green",
),
),
rx.text(
f"Absolute:",
rx.badge(
abs(OperState.number),
variant="soft",
color_scheme="blue",
),
),
rx.text(
f"Numbers seen:",
rx.badge(
OperState.numbers_seen.length(),
variant="soft",
color_scheme="red",
),
),
),
rx.button("Update", on_click=OperState.update),
)
All of the comparison operators are used as expected in python. These include ==
, !=
, >
, >=
, <
, <=
.
There are operators to add two vars +
, subtract two vars -
, multiply two vars *
and raise a var to a power pow()
.
Integer 1 | Integer 2 | Operation | Outcome |
---|---|---|---|
0 | 0 | Int 1 == Int 2 | |
0 | 0 | Int 1 != Int 2 | |
0 | 0 | Int 1 > Int 2 | |
0 | 0 | Int 1 >= Int 2 | |
0 | 0 | Int 1 < Int 2 | |
0 | 0 | Int 1 <= Int 2 | |
0 | 0 | Int 1 + Int 2 | 0 |
0 | 0 | Int 1 - Int 2 | 0 |
0 | 0 | Int 1 * Int 2 | 0 |
0 | 0 | pow(Int 1, Int2) | 1 |
import random
class CompState(rx.State):
number_1: int
number_2: int
def update(self):
self.number_1 = random.randint(-10, 10)
self.number_2 = random.randint(-10, 10)
def var_comparison_example():
return rx.vstack(
rx.chakra.table_container(
rx.chakra.table(
headers=[
"Integer 1",
"Integer 2",
"Operation",
"Outcome",
],
rows=[
(
CompState.number_1,
CompState.number_2,
"Int 1 == Int 2",
f"{CompState.number_1 == CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 != Int 2",
f"{CompState.number_1 != CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 > Int 2",
f"{CompState.number_1 > CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 >= Int 2",
f"{CompState.number_1 >= CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 < Int 2 ",
f"{CompState.number_1 < CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 <= Int 2",
f"{CompState.number_1 <= CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 + Int 2",
f"{CompState.number_1 + CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 - Int 2",
f"{CompState.number_1 - CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"Int 1 * Int 2",
f"{CompState.number_1 * CompState.number_2}",
),
(
CompState.number_1,
CompState.number_2,
"pow(Int 1, Int2)",
f"{pow(CompState.number_1, CompState.number_2)}",
),
],
variant="striped",
color_scheme="teal",
),
),
rx.button("Update", on_click=CompState.update),
)
The operator /
represents true division. The operator //
represents floor division. The operator %
represents the remainder of the division.
Integer 1 | Integer 2 | Operation | Outcome |
---|---|---|---|
3.5 | 1.4 | Int 1 / Int 2 | 2.5 |
3.5 | 1.4 | Int 1 // Int 2 | 2 |
3.5 | 1.4 | Int 1 % Int 2 | 0.7000000000000002 |
import random
class DivState(rx.State):
number_1: float = 3.5
number_2: float = 1.4
def update(self):
self.number_1 = round(random.uniform(5.1, 9.9), 2)
self.number_2 = round(random.uniform(0.1, 4.9), 2)
def var_div_example():
return rx.vstack(
rx.chakra.table_container(
rx.chakra.table(
headers=[
"Integer 1",
"Integer 2",
"Operation",
"Outcome",
],
rows=[
(
DivState.number_1,
DivState.number_2,
"Int 1 / Int 2",
f"{DivState.number_1 / DivState.number_2}",
),
(
DivState.number_1,
DivState.number_2,
"Int 1 // Int 2",
f"{DivState.number_1 // DivState.number_2}",
),
(
DivState.number_1,
DivState.number_2,
"Int 1 % Int 2",
f"{DivState.number_1 % DivState.number_2}",
),
],
variant="striped",
color_scheme="red",
),
),
rx.button("Update", on_click=DivState.update),
)
In Reflex the &
operator represents the logical AND when used in the front end. This means that it returns true only when both conditions are true simultaneously.
The |
operator represents the logical OR when used in the front end. This means that it returns true when either one or both conditions are true.
The ~
operator is used to invert a var. It is used on a var of type bool
and is equivalent to the not
operator.
Var 1 | Var 2 | Operation | Outcome |
---|---|---|---|
Logical AND (&) | |||
Logical OR (|) | |||
The invert of Var 1 (~) |
import random
class LogicState(rx.State):
var_1: bool = True
var_2: bool = True
def update(self):
self.var_1 = random.choice([True, False])
self.var_2 = random.choice([True, False])
def var_logical_example():
return rx.vstack(
rx.chakra.table_container(
rx.chakra.table(
headers=[
"Var 1",
"Var 2",
"Operation",
"Outcome",
],
rows=[
(
f"{LogicState.var_1}",
f"{LogicState.var_2}",
"Logical AND (&)",
f"{LogicState.var_1 & LogicState.var_2}",
),
(
f"{LogicState.var_1}",
f"{LogicState.var_2}",
"Logical OR (|)",
f"{LogicState.var_1 | LogicState.var_2}",
),
(
f"{LogicState.var_1}",
f"{LogicState.var_2}",
"The invert of Var 1 (~)",
f"{~LogicState.var_1}",
),
],
variant="striped",
color_scheme="green",
),
),
rx.button("Update", on_click=LogicState.update),
)
The 'in' operator is not supported for Var types, we must use the Var.contains()
instead. When we use contains
, the var must be of type: dict
, list
, tuple
or str
.
contains
checks if a var contains the object that we pass to it as an argument.
We use the reverse
operation to reverse a list var. The var must be of type list
.
Finally we use the join
operation to join a list var into a string.
List 1: 1,2,3,4,6
List 1 Contains 3: true
List 2: 7,8,9,10
Reverse List 2: 10,9,8,7
List 3: p,y,t,h,o,n
List 3 Joins: python
class ListsState(rx.State):
list_1: list = [1, 2, 3, 4, 6]
list_2: list = [7, 8, 9, 10]
list_3: list = ["p", "y", "t", "h", "o", "n"]
def var_list_example():
return rx.hstack(
rx.vstack(
rx.heading(
f"List 1: {ListsState.list_1}", size="3"
),
rx.text(
f"List 1 Contains 3: {ListsState.list_1.contains(3)}"
),
),
rx.vstack(
rx.heading(
f"List 2: {ListsState.list_2}", size="3"
),
rx.text(
f"Reverse List 2: {ListsState.list_2.reverse()}"
),
),
rx.vstack(
rx.heading(
f"List 3: {ListsState.list_3}", size="3"
),
rx.text(
f"List 3 Joins: {ListsState.list_3.join()}"
),
),
)
The lower
operator converts a string var to lowercase. The upper
operator converts a string var to uppercase. The split
operator splits a string var into a list.
List 1: PYTHON is FUN
List 1 Lower Case: python is fun
List 2: react is hard
List 2 Upper Case: REACT IS HARD
Split String 2: r,e,a,c,t, ,i,s, ,h,a,r,d
class StringState(rx.State):
string_1: str = "PYTHON is FUN"
string_2: str = "react is hard"
def var_string_example():
return rx.hstack(
rx.vstack(
rx.heading(
f"List 1: {StringState.string_1}", size="3"
),
rx.text(
f"List 1 Lower Case: {StringState.string_1.lower()}"
),
),
rx.vstack(
rx.heading(
f"List 2: {StringState.string_2}", size="3"
),
rx.text(
f"List 2 Upper Case: {StringState.string_2.upper()}"
),
rx.text(
f"Split String 2: {StringState.string_2.split()}"
),
),
)
Indexing is only supported for strings, lists, tuples, dicts, and dataframes. To index into a state var strict type annotations are required.
class GetItemState1(rx.State): list_1: list = [50, 10, 20] def get_item_error_1(): return rx.vstack( rx.chakra.circular_progress( value=GetItemState1.list_1[0] ) )
In the code above you would expect to index into the first index of the list_1 state var. In fact the code above throws the error: Invalid var passed for prop value, expected type <class 'int'>, got value of type typing.Any.
This is because the type of the items inside the list have not been clearly defined in the state. To fix this you change the list_1 defintion to list_1: list[int] = [50, 10, 20]
class GetItemState1(rx.State):
list_1: list[int] = [50, 10, 20]
def get_item_error_1():
return rx.vstack(
rx.chakra.circular_progress(
value=GetItemState1.list_1[0]
)
)
Errors frequently occur when using indexing and foreach
.
class ProjectsState(rx.State): projects: List[dict] = [ { "technologies": [ "Next.js", "Prisma", "Tailwind", "Google Cloud", "Docker", "MySQL", ] }, { "technologies": [ "Python", "Flask", "Google Cloud", "Docker", ] }, ] def get_badge(technology: str) -> rx.Component: return rx.badge( technology, variant="soft", color_scheme="green" ) def project_item(project: dict): return rx.box( rx.hstack( rx.foreach(project["technologies"], get_badge) ), )
The code above throws the error TypeError: Could not foreach over var of type Any. (If you are trying to foreach over a state var, add a type annotation to the var.)
We must change projects: list[dict]
=> projects: list[dict[str, list]]
because while projects is annotated, the item in project["technologies"] is not.
class ProjectsState(rx.State):
projects: list[dict[str, list]] = [
{
"technologies": [
"Next.js",
"Prisma",
"Tailwind",
"Google Cloud",
"Docker",
"MySQL",
]
},
{
"technologies": [
"Python",
"Flask",
"Google Cloud",
"Docker",
]
},
]
def projects_example() -> rx.Component:
def get_badge(technology: str) -> rx.Component:
return rx.badge(
technology, variant="soft", color_scheme="green"
)
def project_item(project: dict) -> rx.Component:
return rx.box(
rx.hstack(
rx.foreach(
project["technologies"], get_badge
)
),
)
return rx.box(
rx.foreach(ProjectsState.projects, project_item)
)
The previous example had only a single type for each of the dictionaries keys
and values
. For complex multi-type data, you need to use a Base var
, as shown below.
Ariana Grande
30
arianagrande.com
https://es.wikipedia.org/wiki/Ariana_Grande
Gal Gadot
38
http://www.galgadot.com/
https://es.wikipedia.org/wiki/Gal_Gadot
class ActressType(rx.Base):
actress_name: str
age: int
pages: list[dict[str, str]]
class MultiDataTypeState(rx.State):
"""The app state."""
actresses: list[ActressType] = [
ActressType(
actress_name="Ariana Grande",
age=30,
pages=[
{"url": "arianagrande.com"},
{
"url": "https://es.wikipedia.org/wiki/Ariana_Grande"
},
],
),
ActressType(
actress_name="Gal Gadot",
age=38,
pages=[
{"url": "http://www.galgadot.com/"},
{
"url": "https://es.wikipedia.org/wiki/Gal_Gadot"
},
],
),
]
def actresses_example() -> rx.Component:
def showpage(page: dict[str, str]):
return rx.vstack(
rx.text(page["url"]),
)
def showlist(item: ActressType):
return rx.vstack(
rx.hstack(
rx.text(item.actress_name),
rx.text(item.age),
),
rx.foreach(item.pages, showpage),
)
return rx.box(
rx.foreach(MultiDataTypeState.actresses, showlist)
)
Setting the type of actresses
to be actresses: list[dict[str,str]]
would fail as it cannot be understood that the value
for the pages key
is actually a list
.
You can also combine multiple var operations together, as seen in the next example.
The number is 0
Even
import random
class VarNumberState(rx.State):
number: int
def update(self):
self.number = random.randint(0, 100)
def var_number_example():
return rx.vstack(
rx.heading(
f"The number is {VarNumberState.number}",
size="5",
),
# Var operations can be composed for more complex expressions.
rx.cond(
VarNumberState.number % 2 == 0,
rx.text("Even", color="green"),
rx.text("Odd", color="red"),
),
rx.button("Update", on_click=VarNumberState.update),
)
We could have made a computed var that returns the parity of number
, but
it can be simpler just to use a var operation instead.
Var operations may be generally chained to make compound expressions, however some complex transformations not supported by var operations must use computed vars to calculate the value on the backend.